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Coherency strains in compositionally modulated 
systems and superlattices: spinodal 
decomposition and magnetoelasticity 
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Department of Physics, Aristotle University of Thessaloniki, 540 06, Thessaloniki, Greece 

Systems with a coherently modulated composition are considered with regard to their elastic 
properties. The (stress-free) coherency strains are considered in a new frame where the 
"standard state" is redefined on the basis of the property under study. These strains are used 
in the study of the thermodynamics of spinodal decomposition in solids with a (generally) 
anisotropic distortion into a cubic matrix. Finally, the influence of these strains is considered in 
the study of magnetostrictive effects in such modulated systems or strained-layer superlattices. 

1. Introduct ion  
The theory of thermodynamics of inhomogeneous 
systems, although it had been treated by Gibbs in 
his foundations of the subject, has not been deeply 
studied nor, of course, applied and generalized in the 
degree that natural phenomena require. In particular, 
the theory of phase transformations of systems involv- 
ing gradients of composition was the subject of the 
Cahn and Hilliard work [1] which, later [2-4], guided 
Cahn to develop the theory of spinodal decomposition 
by including in the work of  Cahn and Hilliard [1] the 
elastic term due to "coherency strains". 

This work prompted the development of a new 
theory of diffusion in the continuum [1, 5] as well as 
the microscopic [6] theory of  elasticity and initiated 
the study of the thermodynamics of systems with a 
"dome" - the so-called miscibility gap - in their 
phase diagram. Envisaging the artificial production of  
materials resembling those that are the product of  
spinodal decomposition, Cook and Hilliard [7] were 
the pioneers of preparing and studying artificial 
composition-modulated thin films. After the advent of  
new instrumentation and preparation techniques, and 
because of the obvious technological interest of such 
systems of semiconductors, metals and semi-metallic 
materials, one clearly understands the importance of  
addressing questions concerning the thermodynamic 
metastability and/or the possibility of obtaining new 
properties from such exotic materials. 

The possible significance of these strong strains in 
such artificially produced materials has been recently 
under intense study. For example, the possibility for 
coherency strain-induced piezoelectricity [8] or the 
onset of new and anisotropic properties from such 
"strained-layer superlattices" (SLS) [9] has been the 
subject of  some recent work [e.g. 9-11]. However, 
it is not always taken into consideration that the 
periodically fluctuating strain of the SLS should 
be treated differently from that corresponding to a 
single interface [12] between two materials with a 
considerable lattice mismatch. The result is the 

approximation of an exact "effective" elastic modulus 
by the shear one. 

The aim of this report is to contribute to the theory 
of the coherency strains in modulated systems as well 
as to proceed with possible applications. In Section 2, 
a theory of coherency strains will be given which is 
important for the development of the elasticity theory 
of the coherency-strain dependent part of the Helm- 
holtz free energy. The spinodal decomposition mech- 
anism will be discussed, in Section 3, in the light of this 
theory. Finally, magnetostriction will be studied, in 
Section 4, in accordance with the present development 
of elasticity in coherent modulations. In the Appendix 
the mechanism for linear homogeneous transforma- 
tions, which are useful in studying elasticity in a man- 
ner such as that used here, will be given, together with 
a derivation of some results used in the main part of 
the report, in a form easily applicable in the study 
of other properties of compositionally modulated 
systems or SLS. 

2. C o h e r e n c y  strains  
Let us consider, in Fig. 1, two slabs of cubic materials 
A and B which are thick enough to be considered as 
semi-infinitely extending along the z direction; let 
them have lattice parameters a~ and a2, respectively. 
When their xy surfaces come together, the two lattices 
may be deformed in order to assume a coherent 
matching or, otherwise, the lattice mismatch could be 
taken up by the formation of a dislocation network. 
The present work is concerned with the former case, 
which results in the development of the so-called 
"coherency strains". In the "new" material the lattice 
spacing in the xy  plane will have a value between a] 
and a2 while the larger of them (a~ in Fig. 1) will 
be expanded (and the shorter contracted) along 
the z direction. This coherency-strain related defor- 
mation will create a fluctuation of the interplanar 
spacing (along z) when such slabs are brought together 
periodically so that the new material will contain 
a periodically varying composition in the manner 
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Figure 1 Two slabs (A, B) of cubic materials, having 
different lattice parameters, being deformed (dashed- 
dotted parts) in order to meet the requirement of  
coherence for fluctuation as shown. 

A - B - A - . . . .  It is important to distinguish between 
the different kinds of strain, for it is often a source 
of common confusion in the literature. The lattice 
mismatch can produce a local strain (s i"r without 
coherently matching the two lattices. When the latter 
occurs one has to consider the (stress-free) coherency 
strain (e*). In that case the total elastic strain (s T) is 
not simply the elastic one (s E) but has to incorporate 
the new strain. For example, for a coherent structure 
e v = e E + s*. We will now proceed with the deriva- 
tion and discussion of the coherency strains in a super- 
lattice formed by the periodic addition of A and B. 

At first let us observe the initially obvious effect; 
material A will have suffered a deformation strain 
c3t = (ao - al)/al while B will take 52 = (a0 - a2)/a2, 
where a0 is the common lattice spacing [8, 13] after the 
deformation as long as we have required coherence of 
the new lattice..Thus, in the xy  plane there is no 
variation of the lattice spacing. We require that the 
molar (and total) volume remains the same and, 
hence, we have created lattice-spacing (interplanar) 
changes in the z direction - which is the direction of 
the periodic variation. The above-defined 61, 62 are 
planar strains while the strains in the modulation 
direction (z) will be given by 5~ = [d(z) - do]/do, 
where the d variables will be defined below, and these 
strains will be local as opposed to the (constant) 
planar ones. Now about the meaning of d0 and d(z) we 
mustclarify the following. It is important, before one 
defines the d variables, to have taken into consider- 
ation the physical property which will be under the 
influence of d and 5~. Namely, it is of major signifi- 
cance to select the "standard" (or "reference") state 
according to the property which will be under investi- 
gation. For  example, there is going to be a different 
influence of the standard state on the study of  X-ray 
diffraction compared with, say, transport or magnetic 
properties. In particular, it is to be distinguished 
whether our "probe of  measurement" is operating 
locally or by averaging out over the whole sample 
macroscopically. According to this thought we can 
proceed with the following definitions. 

1. For strains relative to the average lattice spacing, 
do is the average spacing over the entire thickness 

along the z direction (or, equivalently, over one 
modulation period). 

2. The spacing do can be that of a crystal with the 
same average composition as the local composition at 
point z; in other words, if c(z) is the composition at 
point z, then do is the lattice spacing of a homogeneous 
crystal with composition c(z) while d(z), in both 1 and 
2 above, is the local lattice spacing at the interface at 
z. Of course, d(z) # do(c(z)). 

The above two definitions of do provide the defi- 
nitions of the two standard states. For, when studying 
X-ray diffraction (or other properties by local-probe 
techniques, e.g. spin resonance) one must use Case 2 
above, while Case 1 would be more appropriate 
for "bulk measurement" techniques. 

We are now ready to proceed with the appropriate 
definition of the coherency strains. As expected, and 
shown in the Appendix, the linear compressibility of a 
cubic material, 1 / (C .  + 2C~2) where C~ are the elastic 
constants, is independent of the direction. Therefore, 
we can use this to calculate the stresses due to defor- 
mation strains. One important point in the calculation 
of the stresses is that one must assume that, in the 
direction of  the modulation, the deformation is stress- 
free and the stresses relax reversibly so that the work 
will take a minimal value. Thus, for Slab A we have 
ex = ey = 5~ and we seek e~ under the requirement 
that the system be stress-free. We work in a trans- 
formed system (x', y', z') where 

a~, - 0 = Cv2,~x, + Cv3,~>, + Cl,ve:, 

We will see in the Appendix that we can have Cv2, = 
Cl,y s o  that Cv2,(sx, + ~y,) = - Cvv~,, o r  2CI,2,s x, = 

-Cvre~, since ex,, sy, do not depend on orientation 
and, therefore, 

(C1, I, -t- 2 C v 2 , ) 5 ,  = C H , ( 5 ,  - -  ~=,) 

Since the compressibility Will be invariant under 
transformation we obtain, finally 

~, = 61 (1 Cjl + 2C12"] . / (1) 

It will be seen in the Appendix how one finds Ciz 
which then gives the coherency strains through 
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Equation 1. Later, we will obtain (see Equations 4 
below) these coherency strains for certain directions of  
cubic modulation. (The analysis appeared for the first 
time in Hilliard [5] but it was in some error. In other 
work by Hilliard [14, 15] parts of  the above may also 
be found.) 

Finally, we will relate coherency strains to the 
deformation tensors which describe these phenomena 
and will be used in applications in the following 
sections. 

Let us assume do(co) to be the average lattice spac- 
ing of  the strain-free material of  composition co. 
We may consider a variation of d around d o (of 
Co) so that d(c) = d0[1 + r/(c - co) + �9 . .  ], where 
q = (1/do)(dd/dc), o. Therefore 80 = [d(c) -- do]/do = 
q(c - co), in its general form. However, in the defi- 
nition of 80 there is still room for some more manipu- 
lation. Indeed, one can use g0 in the form 6 = 1 [(1 + 
60) 2 -- 1], which is nothing but a first-order approxi- 
mation. Let us now elucidate this point. 

If  xi is the displacement of  the material under stress 
and 2i denotes that of  the unstressed solid, we will 
have A U - Oxs/SYc s. We can now use the Langrangian 
strain parameter  q0 = �89 (AkiA~j - 60), where 6 o is the 
Kronecker delta. This strain parameter,  r/,j takes the 
following form in the case of  or thonormal  systems: 

~/ll = �89 ( A l l A l l  q- A21A21 q- A3tA31 - 611 ) etc. 

while Ai#j = 0. Therefore 

ql, = ,22 = �89 + 6"'.') 2 -  1] 

~/33 = �89 + 6:) 2 -  1] (2) 

As already mentioned above, these expressions merely 
represent a high-order approximation in strain. 

Finally, we consider as an example an f c c  solid 
modulated along [1 1 1], the usual case of  f c c  metals 
grown on to hexagonal substrates. Then 6 IT~ will be 
that for 6"" and g i l l  ~_ (5 z. For the strain correspond- 
ing to the incoherent case we will have no internal 
stresses, and, therefore 

e inc ~--- 8 0 ~ q(C - -  C0) --  1 da (c -- Co) 
a 0 (1c c 0 

(3) 

For the strain corresponding to coherency, which is 
the case of  interest to us, we will have 

Z* = e inc (1  CII q- 2 C I 2 ~  
U,,,7 / 

after using Equations 1 and 3. Therefore, for cubic 
materials 

8 " [ 1 0 0 ]  = - - 2 g  inc C12 
C l l  

8"[110] = _gmcC, L + 3C,2 -- 2C44 (4) 
Cu + C~2 + 2(744 

8"[1 1 1] = --28 inc CI1 + 2C12 - -  2(744 
CI1 + 2C12 + 4C64 

Since, for cubic systems, usually (2C44 + C ~ 2 -  
C~) > 0, we can deduce from Equations 4 that the 
usual case will be 

le*[lOO]l > le*[llO]l > I~*[1 l l ] l  

In Equations 4 one has the freedom of selecting, 
according to the problem under study, the following: 

(a) The standard state; this will result in the corre- 
sponding 6 values. 

(b) The degree of the approximation (i.e. whether 
or not to use Equations 2; this will determine the final 
form of  a inc. 

Also, referring to (a) above, one should look for the 
correct definition of the standard state within the 
framework of Section 2 together with Equations 2 and 
3 of  Flevaris et al. [13] for a0. 

3. Spinodal decomposition 
In a general manner one has to distinguish between 
two types of  phase-metastability: that which is infi- 
nitesimally small in degree and the one that is extremely 
short in extent but large in degree. The former is the 
case of  a small composition fluctuation which extends 
over (macroscopically) large distances of  a crystal. As 
shown by Gibbs [16], such a fluctuation will be stable 
when the increase of  the concentration of one com- 
ponent would result in an increase of the corresponding 
chemical potential. This condition has been qualified 
to indicate such an instability by Cahn [2-4]; the 
boundary of this instability defines the miscibility 
gap for spinodal decomposition. He was the one who 
developed the theory of spinodal decomposition after 
the previous development of  the new treatment for the 
thermodynamics of  inhomogeneous systems by him 
and Hilliard [1, 17]. (For an excellent review on 
spinodal decomposition the reader should consult 
Hilliard [5].) Some important  concepts are as follows. 

Assume that the molar volume does not change 
with temperature and pressure. In addition, consider 
that all changes take place at a constant temperature 
while the average molar volume remains constant. 
This condition qualifies the use of  the Helmholtz 
(rather than the Gibbs) free energy, F. Furthermore, 
in addition to the free energy of a homogeneous 
system one must now consider the following two 
contributions. 

First, the increase of  F due to the composition 
gradient that will be added when the concentration 
fluctuates. This contribution ought to be considered 
such as to introduce positive surface tensions and, 
also, not to depend on the "orientat ion" of  the crystal. 
Second, and independent of  the above "gradient- 
energy" contribution, there will be an elastic energy 
contribution due to stress-free changes of  the molar 
volume with composition; this will occur along certain 
crystallographic directions where, consequently, the 
composition will fluctuate preferably. This second 
term, contrary to the first one, will introduce an 
anisotropy which will govern the kinetics of  the early 
stages of  spinodal decomposition. The latter contribu- 
tion to F will be the subject of  this section. 

Approximate  expressions for the coherency-strain 
elastic free energy were developed first by Cahn [2-4] 
for cubic solids with a composition fluctuation along 
[1 00] or [1 1 1]. Later, Hilliard [5] gave the general 
expression for cubic systems. However, all that work 
assumed isotropic deformation. Furthermore, attempts 
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to extend the theory to lower-symmetry systems by 
Krivoglaz [18], Stubican and Schultz [19], Kittel 
[20, 21], Park et al. [22, 23] and Wu et al. [24] were not 
without errors. 

More recently, the expression for the coherency- 
strain elastic free energy was derived for hexagonal- 
symmetry systems, and applied [25] to the study of 
A1-Mn-Zn. Also, a general expression for isotropic, 
cubic, hexagonal, tetragonal and orthorhombic systems 
has been developed [26, 27] and, also, applied recently 
[28] in the study of spinodal decomposition in the 
tetragonal system SnO2-TiO2. In this work [26-28] 
the deformation did not necessarily have to be iso- 
tropic while the entire theory could be treated in a 
quasi-discrete manner; among the rest, only the Cook 
and de Fontaine work [6] was not entirely in the 
continuum theory of elasticity. 

As an application of  the earlier work [26, 27], in the 
following we will give the coherency-strain dependent 
part of the free energy of cubic systems with anisotropic 
distortion, within the continuum theory of elasticity. 
From this it will become obvious how the elastic 
aeolotropy determines the anisotropic kinetics of 
spinodal decomposition. 

Our objective is to calculate the elastic free energy 
density in terms of the coherency strains. To do this, 
following earlier work [26], we use again the relation 
~0"E = ~v _ e,y* and after applying the minimization 
condition we obtain the elastic free energy per unit 
volume in terms of g* only (i.e. the coherency-strain 
energy) in the form 

1 
r~, = ~ fv Co*l (8*ek* - 2u,aek* + ui juka) d V  

where V is the volume and u u the displacement 
gradients due to distortion while C~ are the second- 
order elastic constants. From this expression for the 
coherency-strain elastic free energy one can get the 
following. First, by a minimization requirement, the 
appropriate [13] average lattice spacing as mentioned 
in Section 2. Second, the anisotropy of the energetics 
of the system. Third, by using the appropriate dis- 
tortion tensor, the morphology of  the system that 
underwent a composition transformation (or equiv- 
alently, prepared artificially to simulate decom- 
position deformation). 

Let us now define the deformation tensor as 

/~11 0 0 

 =i0 ) 
0 0 3 

Applying this distortion to the expression for F~, we 
get for a cubic solid coherently modulated along [1 0 0] 

1 3 
= [~i iCl l  "jr 21"]ii1~jjC12 Fe~[1 00 ]  2 L 2 

i,j= 1 
j - i + l  

- Cf i l ( t l2C~i - 2r/j/ j ;C, iCl j)]  (5) 

where i, j follow a cyclic permutation. Furthermore 

1 3 
F~[1 l 01 = ~ Y, (n]C,i + 2,,njjC12) 

i,j= l 
j - - i+1 
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- D ,  {[(q~ § r/~)/21 [Cll (Cll ,jr C12 ) 

"jr C44.(Cli - C i2 ) ]  Jr ~']lT12[C12(Cll "jr C12) 

"jr C 4 4 ( C l 1  - -  Cl2)] ,jr /']3C12[(~1 -1- ~2)Cll  

"jr (t/, "jr //2 "jr tl3)Cl2] } 

where Di -~ = C~ § Cl2 + 2C44. Similarly 

o r  

(6) 

F~][1 1 1] = 1[(Cl101, + 2C12012) 

--D(T1011 + 2T2012)] (7a) 

where 01l = s r/z, 012 = Z ~ j = l  r/iir/jj (again with 
j = i § 1 ) a n d  

D ' = ~ (C , i  + 2C,2 + 4C44)(Cll - C,2 + C44) 2, 

F I = Cl l  - -  DT~, F2 = Cl2 -- DT2, 

T 1 = 17 [Cl,(C~l § 2C~2) § 2Ci2C44(3C, i + 2C44) 

§ - -  C~2 ) "jr 3C21(Cz~4 - Ci22)] 

T2 = ~7 [ (C~l "jr 2C~2)(C12 - C44) 

+2C~C~2C44(3Cu + 2C~)  

+ 3C,,C~2(C,2 + C ~ )  - C~IC~4] 

T I + 2T2 = 217 (Cl, + 2C12)2(Cu - Cl2 71- C44) 2 

The latter expression for T 1 + 2T2 will be used later, 
for the case of  isotropic distortion tensor, to yield the 
known Cahn-Hilliard relation, in Equations 1 5. 

From these general expressions we can obtain 
simpler (and less general) ones for a tetragonal dis- 
tortion in a cubic matrix, namely the case for which 
tTll = q22 z)& t]33 for both components or q ,  ~ /'122 ~- 
?]33 for one and t/j I = //33 ~ t]22 for the other. This case 
was the subject of Khachaturyan's work [29]; he used 
a Green's function method which yields the same 
results with the present model [26-28]. 

If we assume rhl = q22 :~ q33 Equations 7 give, for 
example, 

F~t[1 1 11 = 1 [(2r/21 + r/]3)F ' + 2(r/~, + 2t/llr/33)r21 

(8) 

If we require (8F/aq33),l,,r,w = 0, Equation 8 gives 

,/3,[1 1 1] = -2~h,F2/F, (9) 

and similarly for [1 0 0] and [1 1 0]. 
Two points must be stressed here. First, that which 

concerns Equation 8 with respect to a variation - as 
expected - of the stress-free strain. By applying the 
appropriate q33[1 1 1] from Equation 9, we obtain the 
"equilibrium" elastic free energy per unit volume in 
the form 

Fe~equ.[1 1 1] = r/~l[Fi + F2 -- (2F2/F,)] 

Second, it must be noted that the requirement for 
equilibrium imposed on the free energy per unit 
volume can be extended. Indeed, if we consider the 
elastic free energy for one period of the modulation it 
would be possible to obtain a figure for the lattice 
spacing [13] as a function of the elastic constants, 

F~[1 1 1] = 1 (El011 § 2F20,2 ) (7) 



the period and its asymmetry in composition as 
mentioned above. 

We must mention, finally, that the expressions for 
the coherency-strain elastic free energy given by 
Equations 5 to 3 reduce to those given by Cahn and 
Hilliard for the special case of isotropic distortion 
(/~/11 ~--- //22 = ~33 = / 1 ) w h i c h  are 

F~ ' [hk l ]  = Y [ h k l ] q  2 (lO) 

where 

Y[1 0 O] 
2C~2 

= CI[ @- CI2 - _  
CII 

Y[I 10] - CII - ' } -  2C1)( 2(C,, + 2Ct2 ) ) 
2 - 3 -- C~ + Cl2 + 2C~ 

6C44(G1 + 2C12) 
Y[I 1 1] = {~'11 -[- 2C~2 4- 4C44 (11) 

The growth rate of modulations (i.e. decomposition) 
is, in the case of isotropic distortion, maximum in the 
direction that minimizes Y. Our treatment above, as 
well as the alternative one given in the Appendix, 
yields this special "elastic modulus" Y which is very 
important in the work on modulated systems. One 
can use, in addition, the approximation defined by 
Equations 2 in order to have a higher approximation 
for the strains. We have already seen above the F~ to 
second order in the strains. The additional (to third 
order) contribution will be 

(F, + F2)r/~, 

and to fourth order 

1 4 
4Fit l l i  + 

4- F2F/II~33(~33 - -  //]11) 

�88 F2r/~,(2r/~ 3 + r/~) 

which expressions, of course, would yield new expres- 
sions of  the type of Equation 9. 

4. Coherency-strain magnetostriction 
In the foregoing two sections we have developed the 
theory of the coherency strains and, also, we have 
seen an application in studying the elasticity thermo- 
dynamics of  cubic solids under anisotropic distortion. 
We will consider now the coherency-strain effects in 
the magnetism of modulated materials and SLS. 
Previous to this work there has been an application [8] 
of similar character but in piezoelectric properties. 
The following arguments are justified only when some 
prerequisites are satisfied. Namely, that the 
two materials have the same crystal structure and the 
lattice-spacing mismatch is within the acceptable 
limits for coherency and strong strain effects; the 
whole theory is applicable for modulation periods not 
as short as the atomic plane distances, where one 
should consider the microscopic theory and not the 
continuum theory of elasticity. 

The tensor description of  the magnetoelastic behav- 
iour of crystalline materials is well known [30]. Also, 
it is known [31, 32] that, assuming a strain acting upon 
a magnetic solid, one can express the magnetoelastic 
energy by 

Fm_el - 2iklm~TikMlM m (12) 

where there is no simple symmetry relation between 

the pairs ik and lm. Then the strains are related to 
relationships of the form 

g,i = Sla~ + S2(aj~ + ak,)  + 2, M 2 

8ij = S3{7ij 4- 22M jM i  etc. 

where i , j ,  k follow the cyclic permutation 1, 2, 3 with 
k = j 4- 1 = i + 2 and the S terms are functions of 
the C 0 variables. These expressions relate the elastic 
with the magnetoelastic energies of cubic materials. 
We will use the following formulation for the mag- 
netoelastic coupling three-rank Q,jk and four-rank Qok~ 
tensors: 

0 

0 0 0 QI4 

0 0 0 0 4 

and 

~qll ql2 qJ2 0 0 0 

q12 qll ql2 0 0 0 

q12 ql2 qll 0 0 0 

0 0 0 q44 0 0 

0 0 0 0 q44 0 

0 0 0 0 0 q44 

(Qu* is for m3ria, 743m, 432, 23,m3; it vanishes however 
for m3m, which class includes nickel. Also, Qokt is 
for 213m, 432 and m3m while for the 23,m3 it has 

q13 • q12") 
We can now write the strain-field relations 

so = Qijk Hk 

o r  

8ij = QiikHk 4- QiiktHkHt 

Thus, if we consider the cases of 743m, 432 or m3m we 
can have 

~,~ = QI ,~ ,HkH t 

el3 = Ql3ktH, Ht etc. 

o r  

86 

and 

~'ii 

= eji = 2q44Hittj (for i r j )  

= q,2(Hi21 4- H2+I) 4- q, lH,  .2 

where i = 1, 2, 3 in cyclic permutation. These rela- 
tions show that el~ = e22 = ~33 when H l = H 2 = H3, 
as expected. 

For magnetostrictive effects we therefore develop 

Al 3 
- Y ~,~-~,~j = ~, , /~  + ~22/~ + ~33/~ 

i~>j 

= [q,2 + (q,, - qtz)fiZ]H~ 

+ 2q44fll fl2Hi H2 

+[q12 + (q,l - ql2)fl~]H 2 + 2q44f12fi3HzH3 

4-[ql2 4- (qu -- q,2)f12]H32 

+ 2q44f13flr H3H1 
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o r  

AI 3 3 
l - ~ [q12 q- (q,, - ql2)fl~] H2 q- q44 ~ H~ttjfi~flj 

i=1 i,j=l 
i r  

where the direction cosines fl~ define the direction of 
AL 

We need to know the dependence of the stress on 
the magnetic field, for we can write 

(7# 

and 

Gii 

= 4C44q44H~Hj = aj, 

= C I , [ q , , H  2 + q~2(tt~2+, + H2_1)1 

+C~212q,2 H2 + (q,, + q,2)(H2+~ + H2_l)] 

where i = 1, 2, 3 within a cyclic order. Thus, we have 
obtained above the relationships giving the stress and 
strain as a function of the magnetic field and the 
material properties. If  we now work in the reverse way 
we can obtain the strain-induced internal magnetic 
field (i.e. we could study "morphic" effects). 

Therefore, after we have obtained numerical values 
for F 1 and F2, for a particular cubic solid (e.g. nickel), 
we can obtain the relation between 6 ljl and 6 ~~ 
for modulation along (1 1 1), together with the 
so-developed coherency strains. Consequently, we can 
have. the internal (planar) stresses due to those 
coherency strains. Finally, given the knowledge of the 
q values for that solid, we are now able to obtain the 
components of variation of the magnetic field induced 
in the solid by the lattice mismatch of the constituents 
and the coherency requirements. 

As an example, let us see the effects of the coherency 
strains on the magnetic anisotropy of a textured 
material, with a (1 1 1) texture along the modulation 
direction. The relevant terms contributing to the mean 
free energy per unit volume will be those due to 
magnetoelastic, elastic, demagnetization, magnetic 
exchange and other anisotropic causes. In our case, we 
need only consider the first two since the rest will not 
depend on the anisotropy of the distortion tensor. 
Thus, we have Fro_ d as  given by Equation 12 and 
Eel[1 1 1] that given by Equations 7 and 7a or Equation 
8. More analytically, we will have 

3 3 

Fro-el = - -21 2 a , M {  - 222 
i=1 i=1 

j = i + l  

o,jM, Mj 

(13) 

= 2, (i = 1, 2, 3) and 2 2 = 2ij ( j  = i + l). where 2~ 
The equilibrium requirements will be (c3F T/ 
~1~33),111.;722.T. V = 0 for Fx = Fm.el -[- Eel. Thus 

q33F1 q- (r/i I q- F/22)F 2 = ) t l C I I M 2 C o S 2 0 M  

(14) 

where 0M is to be the angle between the modulation 
direction and the magnetization vector M. Finally, by 
defining Fm.~ as in Equation 1 3 we obtained the con- 
dition for equilibrium of Fv with respect to the 
coherency strain ~/33, (Equation 14), which will 
provide cos 0M in the angle-dependent, demagnetiz- 
ing, exchange and other anisotropic terms of the total 
free energy per unit volume. 
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5. Summary and discussion 
This report is concerned with the thermodynamics of 
cornpositionally modulated alloys and SLS. We have 
developed the theory of coherency strains in new 
ways; namely, by redefining various possible standard 
(or reference) states, as well as by examining the 
coherency requirement via the restriction of thermo- 
dynamic (stable or metastable) equilibrium. These 
conditions of equilibria provide us with relationships 
between the planar and the stress-free coherency 
strains. Thus, knowledge of the lattice parameters and 
the elastic constants of cubic solids allows us to 
calculate the appropriate coherency strains needed to 
study their influence on the elasticity thermodynamics. 

Furthermore, we extended the theory of spinodal 
decomposition by developing new expressions con- 
cerning the coherency-strain elastic free energy of 
generally anisotropic distortion in a cubic matrix. 
These expressions may provide a useful tool in the 
study of phase transformations and the early stages of 
spinodal decomposition, by being easily applicable and 
considerably more general than those given by Cahn 
and Hilliard. One simple, though important, outcome 
of the present work is that, by using Equations 5 to 7 
or 8, a known "aspect ratio" of the anisotropy of the 
distortion can provide immediately an estimate of its 
influence on the anisotropy of the elastic free energy. 
In addition, the easily applicable expressions given 
here for cubic systems under anisotropic distortions 
can be used in the treatments of various strain-induced 
properties of artificial composition-modulated systems 
or SLS instead of the rather approximate ones often 
used [9-12]. 

Finally, in Section 4 we presented a first attempt to 
include coherency strains in the magnetic properties. 
For some classes of cubic solids, we developed expres- 
sions by which one can proceed to examine the effect 
of the lattice mismatch between two materials on the 
magnetic behaviour of their alloy with a coherent 
modulation along a certain direction. Further work 
on the subject might reveal new important informa- 
tion. Also, by applying the requirement of equilibrium 
with respect to r/33 we obtained the coherency strain 
effects on the magnetization direction. In addition, 
this work should be considered together with con- 
sidering coherency-strain effects on the transport 
and optical properties. For example, in the case of 
"parallel-to-plane" isotropy (~/u = r/= ~ r/33, as also 
studied above) one can obtain a change in the "effect- 
ive mass", upon applying the coherency-strain influ- 
ences of the type 

Ame = me[(1  q - ~ ] 1 | )  2( 1 "J1-/'/33) - 1 -  1] 

By using a relation of the above form one can intro- 
duce the theory of coherency, as developed in this 
work, into the study of diffusion or other physical 
properties. 
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Appendix: Linear homogeneous 

transformations 
It is often necessary, or simply useful, to t rans form to 
a new coordinate  system; as an example  consider a 
composi t ion  modu la t ion  z'  and have the t ransfor-  
mat ion  f rom (a) to (b) in Fig. A1. 

The following a r ray  will be helpful in unders tanding  
the t r ans fo rmat ion  we will pe r fo rm via the cosines 
(l, m, n) between the axes of  (a) and (h): 

x y z 

x '  Ii ml nl 

Y' /2 m2 n2 

z' l 3 m 3 R 3 

For  example,  we will obta in  

Xx, = /IX, + m j ~ .  + niX_ . . . . .  

Z,-, = IIZ,. + mlZ,. + nlZ:  . . . . .  

Y.,f" = 12Xx' q- m2 Yx' -}- n2Zx,, . . . .  

X" 12X,. + m2y,. + n~Z: + 2m, n,Y_ 

+ 2n~l~Z,. + 211m~X,., etc. 

The three stress componen t s  X~, Yy and Z ,  corre- 
spond to normal  t ract ions and X,., Y- and Zx to 
tangential  tractions.  It  is s tandard  practice (and we 
ment ion  it only for completeness)  that  the rota t ion of  
axes will give for the elastic constants  

c;/~, - ax; &;  Ox'~ ax; G,,,~ 
8x,, #x,, 8x~ 8Xp 

where 

After  applying these (known) propert ies  we obta in  for 
a cubic mater ia l  the following relations between the 
initial and the t r ans fo rmed  (pr imed indices) elastic 
constants:  

Ci,  l, = C l ,  -{- 2(2C44 + Cl2 - -  C l l ) ( ~ ,  

e l ,  2, = C 2 T  = C12 -[- ( C l l  - -  CI2)(.01 q- 4C44~1 

C4, 4, = C4402 -[- C l io92  if- 2C l2~2  

CI, 4, = 0 C4, 5, = 0 etc. 

= c1,(l 12 + m?m  + 
+(2(744 + C,2)[12(mlm2 + n,n2) 

+m~(l, 12 + n,n2) + n2(1112 + m~rn2)] 

where 
v 2 2 2 q~ = 121m~ + rain ~ + n~l~ 

Z ~ 

T rnodulation 

(b) 

ii, 
y'  

Figure A1 The two orthogonal systems 
for the transformation from (a) to (b) the 
system modulated along z'. 

= 12l  + mlm  + ,14 
~, = 1,12m~m2 + m~m2n~n2 + nln21~12 

02 = (m2n3 + nero3) 2 q- (12n3 + n213) 2 

q - ( / 2 m 3  -[- / '//:26) 2 

= 2 2 2 2 (D 2 ]212 + m R m  3 + F/2/'/3 

~2 = 1213rn2m3 + m2m3n2n3 + n2n31zls etc. 

In addit ion C2,r -~ C3,3, ~- CH, but with the corre- 
sponding q~ values, while for Cs,s, and C6,r we replace 
02, c02, ~2 by 03, c03, ~3 and 01, co~, ~ ,  respectively. Also 
for 'C~,3,, C2,3, we replace, in the expression for C~,2,, eh ,  
~ by c03,~ 3 and ~%, ~2, respectively. 

We have therefore obta ined the t ransformed C 
values as functions of  the t r ans fo rmat ion  cosines. In 
our  case, for the modula t ion  direction (z') being [1 1 1] 
(as in Fig. A1) we have 

CI,  I, - 31 (CI I  q- 2CI2  q- 4C44 ) 

CI,  2, - -  31 ( e l l  -{- 2 C i 2  - -  2(744 ) 

= G ' , '  = G ' 3 '  = G ' , '  

C4,4, = I ( C ~  - G2 + 4C44) 

C5,5, = 1(C,1 - G2 + 4C44) = C6,6, 

C2,2" ~__ 1 ( e l l  jr_ Cl  2 _}_ 2(7'44 ) = C3,3 ' 

C2,y _ 1 ( e l l  .q_ 5CI2  _ 2C44 ) = Cy2, 

(A1) 

w h i l e  C1'6' = CT6, = CI,4' = C4,5, ~ - 0  a n d  t h e  b u l k  

compressibi l i ty Cvv + 2Cr2, = C1~ + 2C12, inva- 
riant as would be expected. (The same result would 
have been obta ined if (/2, m2, n2), (/3, m3, n3) were 
interchanged.)  

Let us finally examine another  "modu lus " .  I f  we 
treat  again the stresses of  such a modula ted  system we 
see that  

O x, = C1,1,s x, + C1,2,Sy, -~- C1,3,8 z, 

o-y, = (7 x, (7., ~-- 0 

The latter expression yields e,, = - 2 G ,  Cv2,/C H, 
which, applied to the fo rmer  one, gives 

(7.c = tO,, v q- C,, 2, - (2C~,2,/Cvl,)]g x, (A2) 

after we used the second one t o  obtain  ex, = ey,. After  
substi tut ing the new C values (Equat ions  A1) into 
Equat ions  (A2) we may  obtain  the new "elastic 
modu lus"  Y[h k l] to fulfil the condi t ion ac = Y[i']ec : 

(a) [100]: G '  = Y[100]G, ,  where Y[100]  = Cll + 
C~2 - (2C~2/C1~), since Cvv = C~1 and Cv2, = C12. 
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(b) [1 1 1]: the above C],1,, Cv2, and C4,4,, substi- 
tuted from Equations A1 into the expression a~, = 
Y[I 1 1]ex,, yield Y[I 1 1] = 6C44(C,~ + 2C.2)/(C~ + 
2C12 + 4C44). 

(c) Similarly, for other h k l one can now obtain the 
new C values and, therefore, the "new modulus" 
Y[h k l] in an alternative way to what was used for the 
same purpose in Section 3. Also, expressions equivalent 
to Equations 4 can be directly obtained by substitut- 
ing the appropriate Ci7, values in, for example, ~* = 
e~"c[1 - (C]j + 2Cj2)/CH,]. One simply has to develop 
the expressions for this, equivalent to Equations A1. 
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